Tmns-influences Operating across a Binuclear Metal Centre.

A ³¹P NMR Study of the Mixed Adducts ${({\rm CH}_3O)_3P}$. $Rh(O, CCH₃)₄RhL$

ESTER B. BOYAR and STEPHEN D. ROBINSON

Department of Chemistry, King's College, Strand, London WC2R ZLS, U.K.

Received September 3,1982

Since their discovery in 1960, rhodium(I1) carboxylates $\left[\text{Rh}_2(\text{O}_2 \text{CR})_4\right]$ and their axial adducts $[Rh_2(O_2CR)_4L_2]$ have been the subject of much controversy concerning the nature of the axial Rh-Rh and Rh-L bonds [1]. More recently attention has directed to the study of *trans*-influences operating along the $L-Rh-Rh-L$ axis. The unusually long axial Rh-L linkages $- ca$. 0.1 to 0.2 Å longer than those found in comparable mononuclear rhodium- (I) or rhodium (III) complexes $-$ have been attributed to the high trans-influence of the Rh-Rh bond. Conversely the sensitivity of the Rh-Rh bond length to the nature of the axial ligands L is thought to be due to variations in the *trans* influence of the latter, although the changes in this case are less marked possibly because of the inherent shortness of the Rh-Rh bond and the constraining effect of the carboxylate cage [2]. However, no attempt has been made to assess *trans*-influence interactions operating across the binuclear Rh_2^{II} centre between dissimilar ligands in mixed adducts of the form $LRh(O_2CR)_4RhL'$. Indeed to the best of our knowledge no investigation of *lrans* influences extending across a binuclear metal centre has ever been reported. We have now used an NMR technique, similar in principle to those employed in the study of trans-influences within mononuclear complexes [3], to assess *trans* influences operating in mixed adducts of rhodium(H) acetate $\{(\text{CH}_3 \text{O})_3 \text{P}\} \text{Rh}(\text{O}_2 \text{CCH}_3) \text{A} \text{Rh} \text{L}$, using $P(OCH₃)₃$ as the indicator ligand.

 $\frac{1}{2}$ a recent communication $\boxed{4}$ we reported that the low temperature (213 K) $3\overline{1}$ $p\overline{1}$ H₁ NMR spectra of 'Rh₂(O₂ CCH₃)₄{P(OCH₃)₃}₂' in CD₂Cl₂ solution showed the presence of the mono-adduct $Rh_2(O_2$ -CCH₃)₄{P(OCH₃)₃} (X part of AMX pattern, $\delta_{\bf p}$ 36.7 ppm) and the bis-adduct $[Rh_2(O_2CCH_3)_4$ - $P(\overrightarrow{OCH_2})_2$] (XX' part of an AA'XX' pattern, $= 93.5$ ppm) (A, A^t and M = Rh, X, X' = P). The large chemical shift difference (ca. 60 ppm) between the ³¹P NMR signals of the two species pointed to the peration of a strong *trans*-influence across the $\frac{1}{2}$ inuclear Rh 11 centre. To investigate this phenome-

Fig. 1. Graph of the P chemical shift δ AMX of $\{(\text{CH}_2O)_2\}$. R_0 R_2 CCH₂)₄RhL (ppm) against 2 J(103 Rh, 31 P) (Hz).

non more fully we have prepared in solution a series of mixed adducts $\{(\text{CH}_3 \text{O})_3\}$ Rh $(\text{O}_2 \text{CCH}_3)$ ₄RhL and have recorded their low-temperature $^{31}P(^{1}H)$ NMR spectra. The results of these experiments clearly establish the presence of a strong trans-influence operating between $P(OCH₃)₃$ and L ligands along the $Rh₂^{II} axis.$

The mixed adducts $\{(\text{CH}_3 \text{O})_3\}$ Rh $(\text{O}_2 \text{CCH}_3)_4$ RhL were prepared in solution by mixing the complex $Rh_2(O_2 CCH_3)_4$, the bis(trimethyl phosphite) adduct $Rh_2(O_2 CCH_3)_4 \{P(OCH_3)_3\}_2$ and the free ligand L in the NMR solvent (CD_2Cl_2) . The solutions were then cooled to 213 K and the $31P{1H}$ NMR spectra were recorded. In each case the spectrum consisted of the XX' portion of an AA'XX' pattern attributable to the bis adduct $Rh_2(O_2CCH_3)_4[P(OCH_3)_3]_2$ and the X part of an AMX pattern arising from the mixed adduct $\{(\text{CH}_3 \text{O})_3\} \text{Rh}(\text{O}_2 \text{CCH}_3) \text{A} \text{Rh}$ L. Using this technique spectra have been recorded for $ca. 30$ mixed adducts involving P*, As, Sb, Bi, N and 0 donor ligands. A plot of the $31P$ NMR chemical shift of the mixed adducts (δ_{AMX}) versus the

coupling constant $^{2}J(10^{3}Rh^{31}P)$ gives a good straight line graph (see Fig. 1); the ordering of the points on this line corresponds to a *trans*-influence series for the ligands L. The sequence of the ligands in order of decreasing *trans*-influence - P(OCH₃)₃ > $P(OPh)_{3} \approx PPh_{3} > AsPh_{3} > SbPh_{3} \approx py > NH(C_{2}$ H_5 ₂ > N(C₂H₅)₃ > C₆H₅NH₂ > NCO⁻ > CH₃CN \approx PhCN > CH₃NCS > PhNCS > BiPh₃ > H₂O \approx $(CH_3)_2CO \approx THF -$ is very similar to that found for several other series of complexes where σ -bonding effects are thought to be dominant [5, 6].

Data for adducts containing S-donor ligands also generate points which lie on the straight line plot. However, since the values of δ_{AMX} and 2 J (¹⁰³Rh³¹P) recorded for these complexes span wide ranges (ca. 30 ppm and 20 Hz respectively), the S-donor ligands involved do not appear as a coherent group in our trans-influence series. It is possible that the large differences in *trans*-influence displayed by the different S-donor ligands reflect variations in sterichindrance (${}^t\text{Bu}_2$ S vs. C₄H₈S) and sulphur oxidation state or hybridisation $[(CH₃)₂SO \nu s. CS₂]$. Measurements on a more extensive series of S-donor adducts designed to throw further light on this problem are in progress.

There is also an approximately linear correlation between the magnitudes of the δ_{AMX} values obtained for the various $(CH_3O)_3P/L$ adducts and the Rh-Rh bond distances found for the corresponding bis adducts $Rh_2(O_2CCH_3)_4L_2$ where these are known. However, the significance of this correlation will only be fully tested when more structural data become available.

The coupling $1J(103Rh^{31}P)$ involves the rhodium atom most remote from the ligand L and is thus least affected by changes in the nature of that ligand. There is some evidence of a linear correlation between $\frac{1}{2}$ (RhP) and $\frac{2}{3}$ (RhP), however in view of the small range of values $(ca, 16 \text{ Hz})$ found for the former parameter little significance can be placed on this result. The appearance of only one anionic ligand (NCO^{-}) in our *trans*-influence series reflects problems encountered in trying to find an nmr solvent capable of maintaining the salts $M[XRh(O_{2}^{-})]$ $CCH₃)₄Rh{P(OCH₃)}$ in solution at low temperatures. Attempts to resolve this problem are in progress.

References

- 1 For a review of this field, see T. R. Felthouse, Progress *in Inorganic Chemistry, 29, 73 (1982).*
- *2 G. G.* Christoph and Y-B. Koh, *J. Am. Chem. Sot., 101, 1422 (1979).*
- *3* A. Pidcock, 'Catalytic Aspects of Metal Phosphine Complexes', Advances in Chemistry Series No. 196 (American Chemical Soc.) 1, 1982.
- 4 E. B. Boyar and S. D. Robinson, Inorg. *Chim. Acta, 64, L193 (1982).*
- *5* T. G. Appleton and M. A. Bennett, *Inorg. Chem.,* 17, 738 (1978).
- 6 T. Miyamoto,J. *Organomet. Chem., 134, 335 (1977).*

^{*}Spectra obtained when $L = P$ donor ligand are more complex but yield the same information on analysis.