*Trans*-influences Operating across a Binuclear Metal Centre.

A <sup>31</sup>P NMR Study of the Mixed Adducts  $\{(CH_3O)_3P\}$ -Rh $(O_2CCH_3)_4$ RhL

ESTER B. BOYAR and STEPHEN D. ROBINSON

Department of Chemistry, King's College, Strand, London WC2R 2LS, U.K.

Received September 3, 1982

Since their discovery in 1960, rhodium(II) carboxylates  $[Rh_2(O_2CR)_4]$  and their axial adducts  $[Rh_2(O_2CR)_4L_2]$  have been the subject of much controversy concerning the nature of the axial Rh-Rh and Rh-L bonds [1]. More recently attention has directed to the study of *trans*-influences operating along the L-Rh-Rh-L axis. The unusually long axial Rh-L linkages -ca, 0.1 to 0.2 Å longer than those found in comparable mononuclear rhodium-(I) or rhodium(III) complexes – have been attributed to the high trans-influence of the Rh-Rh bond. Conversely the sensitivity of the Rh-Rh bond length to the nature of the axial ligands L is thought to be due to variations in the *trans* influence of the latter, although the changes in this case are less marked possibly because of the inherent shortness of the Rh-Rh bond and the constraining effect of the carboxylate cage [2]. However, no attempt has been made to assess trans-influence interactions operating across the binuclear Rh<sup>II</sup><sub>2</sub> centre between dissimilar ligands in mixed adducts of the form LRh(O<sub>2</sub>CR)<sub>4</sub>RhL'. Indeed to the best of our knowledge no investigation of trans influences extending across a binuclear metal centre has ever been reported. We have now used an NMR technique, similar in principle to those employed in the study of trans-influences within mononuclear complexes [3], to assess trans influences operating in mixed adducts of rhodium(II) acetate  $\{(CH_3O)_3P\}Rh(O_2CCH_3)_4RhL,$ using  $P(OCH_3)_3$  as the indicator ligand.

In a recent communication [4] we reported that the low temperature (213 K) <sup>31</sup>P{<sup>1</sup>H} NMR spectra of 'Rh<sub>2</sub>(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>{P(OCH<sub>3</sub>)<sub>3</sub>}<sub>2</sub>' in CD<sub>2</sub>Cl<sub>2</sub> solution showed the presence of the mono-adduct Rh<sub>2</sub>(O<sub>2</sub>-CCH<sub>3</sub>)<sub>4</sub>{P(OCH<sub>3</sub>)<sub>3</sub>} (X part of AMX pattern,  $\delta_p$ 36.7 ppm) and the bis-adduct [Rh<sub>2</sub>(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>-{P(OCH<sub>3</sub>)<sub>3</sub>}<sub>2</sub>] (XX' part of an AA'XX' pattern,  $\delta_p = 93.5$  ppm) (A, A' and M = Rh, X, X' = P). The large chemical shift difference (*ca.* 60 ppm) between the <sup>31</sup>P NMR signals of the two species pointed to the operation of a strong *trans*-influence across the binuclear Rh<sub>2</sub><sup>II</sup> centre. To investigate this phenome-



Fig. 1. Graph of the P chemical shift  $\delta$  AMX of {(CH<sub>3</sub>O)<sub>3</sub>P}-Rh(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub> RhL (ppm) against <sup>2</sup>J(<sup>103</sup>Rh, <sup>31</sup>P) (Hz).

non more fully we have prepared in solution a series of mixed adducts  $\{(CH_3 O)_3 P\}Rh(O_2 CCH_3)_4 RhL$  and have recorded their low-temperature <sup>31</sup>P{<sup>1</sup>H} NMR spectra. The results of these experiments clearly establish the presence of a strong *trans*-influence operating between P(OCH\_3)\_3 and L ligands along the Rh<sup>1</sup><sub>1</sub> axis.

The mixed adducts {(CH<sub>3</sub>O)<sub>3</sub>P}Rh(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>RhL were prepared in solution by mixing the complex Rh<sub>2</sub>(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>, the bis(trimethyl phosphite) adduct Rh<sub>2</sub>(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>{P(OCH<sub>3</sub>)<sub>3</sub>}<sub>2</sub> and the free ligand L in the NMR solvent (CD<sub>2</sub>Cl<sub>2</sub>). The solutions were then cooled to 213 K and the <sup>31</sup>P{<sup>1</sup>H} NMR spectra were recorded. In each case the spectrum consisted of the XX' portion of an AA'XX' pattern attributable to the bis adduct Rh<sub>2</sub>(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>{P(OCH<sub>3</sub>)<sub>3</sub>}<sub>2</sub> and the X part of an AMX pattern arising from the mixed adduct {(CH<sub>3</sub>O)<sub>3</sub>P}Rh(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>RhL. Using this technique spectra have been recorded for *ca.* 30 mixed adducts involving P\*, As, Sb, Bi, N and O donor ligands. A plot of the <sup>31</sup>P NMR chemical shift of the mixed adducts ( $\delta_{AMX}$ ) versus the

0020-1693/83/0000-0000/\$03.00

© Elsevier Sequoia/Printed in Switzerland

coupling constant  ${}^{2}J({}^{103}Rh{}^{31}P)$  gives a good straight line graph (see Fig. 1); the ordering of the points on this line corresponds to a *trans*-influence series for the ligands L. The sequence of the ligands in order of decreasing *trans*-influence – P(OCH<sub>3</sub>)<sub>3</sub> > P(OPh)<sub>3</sub>  $\approx$  PPh<sub>3</sub> > AsPh<sub>3</sub> > SbPh<sub>3</sub>  $\approx$  py > NH(C<sub>2</sub>-H<sub>5</sub>)<sub>2</sub> > N(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub> > C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub> > NCO<sup>-</sup> > CH<sub>3</sub>CN  $\approx$ PhCN > CH<sub>3</sub>NCS > PhNCS > BiPh<sub>3</sub> > H<sub>2</sub>O  $\approx$ (CH<sub>3</sub>)<sub>2</sub>CO  $\approx$  THF – is very similar to that found for several other series of complexes where *a*-bonding effects are thought to be dominant [5, 6].

Data for adducts containing S-donor ligands also generate points which lie on the straight line plot. However, since the values of  $\delta_{AMX}$  and <sup>2</sup>J (<sup>103</sup> Rh<sup>31</sup>P) recorded for these complexes span wide ranges (*ca.* 30 ppm and 20 Hz respectively), the S-donor ligands involved do not appear as a coherent group in our *trans*-influence series. It is possible that the large differences in *trans*-influence displayed by the different S-donor ligands reflect variations in sterichindrance (<sup>t</sup>Bu<sub>2</sub>S  $\bowtie$ . C<sub>4</sub>H<sub>8</sub>S) and sulphur oxidation state or hybridisation [(CH<sub>3</sub>)<sub>2</sub>SO  $\nu$ s. CS<sub>2</sub>]. Measurements on a more extensive series of S-donor adducts designed to throw further light on this problem are in progress.

There is also an approximately linear correlation between the magnitudes of the  $\delta_{AMX}$  values obtained for the various (CH<sub>3</sub>O)<sub>3</sub>P/L adducts and the Rh-Rh bond distances found for the corresponding bis adducts  $Rh_2(O_2CCH_3)_4L_2$  where these are known. However, the significance of this correlation will only be fully tested when more structural data become available.

The coupling  ${}^{1}J({}^{103}Rh{}^{31}P)$  involves the rhodium atom most remote from the ligand L and is thus least affected by changes in the nature of that ligand. There is some evidence of a linear correlation between  ${}^{1}J(RhP)$  and  ${}^{2}J(RhP)$ , however in view of the small range of values (*ca.* 16 Hz) found for the former parameter little significance can be placed on this result. The appearance of only one anionic ligand (NCO<sup>-</sup>) in our *trans*-influence series reflects problems encountered in trying to find an nmr solvent capable of maintaining the salts M[XRh(O<sub>2</sub>-CCH<sub>3</sub>)<sub>4</sub>Rh{P(OCH<sub>3</sub>)}] in solution at low temperatures. Attempts to resolve this problem are in progress.

## References

- 1 For a review of this field, see T. R. Felthouse, Progress in Inorganic Chemistry, 29, 73 (1982).
- 2 G. G. Christoph and Y-B. Koh, J. Am. Chem. Soc., 101, 1422 (1979).
- 3 A. Pidcock, 'Catalytic Aspects of Metal Phosphine Complexes', Advances in Chemistry Series No. 196 (American Chemical Soc.) 1, 1982.
- 4 E. B. Boyar and S. D. Robinson, *Inorg. Chim. Acta*, 64, L193 (1982).
- 5 T. G. Appleton and M. A. Bennett, Inorg. Chem., 17, 738 (1978).
- 6 T. Miyamoto, J. Organomet. Chem., 134, 335 (1977).

<sup>\*</sup>Spectra obtained when L = P donor ligand are more complex but yield the same information on analysis.